Non-uniform central airways ventilation model based on vascular segmentation
نویسندگان
چکیده
Improvements in the understanding of the physiology of the central airways require an appropriate representation of the non-uniform ventilation at its terminal branches. This paper proposes a new technique for estimating the non-uniform ventilation at the terminal branches by modelling the volume change of their distal peripheral airways, based on vascular segmentation. The vascular tree is used for sectioning the dynamic CT-based 3D volume of the lung at 11 time points over the breathing cycle of a research animal. Based on the mechanical coupling between the vascular tree and the remaining lung tissues, the volume change of each individual lung segment over the breathing cycle was used to estimate the non-uniform ventilation of its associated terminal branch. The 3D lung sectioning technique was validated on an airway cast model of the same animal pruned to represent the truncated dynamic CT based airway geometry. The results showed that the 3D lung sectioning technique was able to estimate the volume of the missing peripheral airways within a tolerance of 2%. In addition, the time-varying non-uniform ventilation distribution predicted by the proposed sectioning technique was validated against CT measurements of lobar ventilation and showed good agreement. This significant modelling advance can be used to estimate subject-specific non-uniform boundary conditions to obtain subject-specific numerical models of the central airway flow.
منابع مشابه
Hyperpolarized Helium MRI of Asthma
A distinguishing feature of asthmatic lungs is that, when provoked, the airways constrict heterogeneously [1]. However, the tools typically used to study ventilation heterogeneity in humans, i.e., measurement of lung mechanics [2] and multiple-breath inert gas washout [3], provide only global and implicit assessment of the functional impact of structural changes. Since airways constitute the pa...
متن کاملA multiscale MDCT image-based breathing lung model with time-varying regional ventilation
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific sim...
متن کاملComplex airway behavior and paradoxical responses to bronchoprovocation.
Heterogeneity of airway constriction and regional ventilation in asthma are commonly studied under the paradigm that each airway's response is independent from other airways. However, some paradoxical effects and contradictions in recent experimental and theoretical findings suggest that considering interactions among serial and parallel airways may be necessary. To examine airway behavior in a...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملFully Distributed Modeling, Analysis and Simulation of an Improved Non-Uniform Traveling Wave Structure
Modeling and simulation of communication circuits at high frequency are important challenges ahead in the design and construction of these circuits. Knowing the fact that the lumped element model is not valid at high frequency, distributed analysis is presented based on active and passive transmission lines theory. In this paper, a lossy transmission line model of traveling wave switch (TWSW) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers in biology and medicine
دوره 65 شماره
صفحات -
تاریخ انتشار 2015